不知大家有没有听过“世界完全对称日”,它是指公历纪年日期中数字左右完全对称的日期。如2010年1月2日(20100102),2011年11月2日(20111102)等。而“世界完全对称日”还有另外一个别称,想知道是什么吗?跟随网络节日一起去了解下吧。
世界完全对称日更严谨的叫法是回文日。首先阐述一下被称作回文日的这个概念:在用八位数字(数位不够用0补足)表示日期(年月日顺序)的时候,那些反过来读与自身无异的便是回文日,就像文学中的回文诗那样。以20111102为例,将八位数按两位两位分成四组,就得到了代表世纪、年、月、日的20/11/11/02。
可以看到世纪数与日期、年份与月份分别互为镜像,因此只需考虑月日就能知道相应年份的特点。众所周知,平年365天闰年366天,因此相应的八位回文数只有366个,其中2月29即0229对应的9220确实是闰年无误。虽然其实也就是一年中的每一天对应一个年份而已,不过镜像的顺序比较跳跃,所以有必要简要分析一下。
一年有十二个月,因此(每个世纪)出现世界完全对称日的年份也就(至多)只有十二个,分别为01~12的镜像,(按顺序)就是01、10、11、20、21、30、40、50、60、70、80、90。同理,会出现世界完全对称日的世纪数也只能是日期的镜像,也就是01、02、03、10、11、12、13、20、21、22……90、91、92这31个。然后,考虑到并不是每个月都有31天,在这些可能的世纪中也就不一定会出现所有12个年份的世界完全对称日,比如公元四世纪就只有11个世界完全对称日(因为2月没有30日),而十四世纪只有7个(五个小月没有31日)。这也就是为什么中午会把今天错算作第86个的直接原因(7×12+2)。